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Summary

The objective of this effort is to develop an analytical model for the coupling of
active noise control (ANC) piston-type actuators that are mounted flush to the inner and
outer walls of an annular duct to the modes in the duct generated by the actuator motion.
The analysis will be used to couple the ANC actuators to the modal analysis propagation
computer program for the annular duct, to predict the effects of active suppression of fan-
generated engine noise sources. This combined program will then be available to assist in
the design or evaluation of ANC systems in fan engine annular exhaust ducts.

An analysis has been developed to predict the modes generated in an annular duct
due to the coupling of flush-mounted ring actuators on the inner and outer walls of the
duct. The analysis has been combined with a previous analysis for the coupling of modes
to a cylindrical duct in a FORTRAN computer program to perform the computations.
The method includes the effects of uniform mean flow in the duct. The program can be
used for design or evaluation purposes for active noise control hardware for turbofan
engines.

Predictions for some sample cases modeled after the geometry of the NASA Lewis
ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6
spinning mode at frequencies where only a single radial mode is cut-on. Radial mode
content in higher order cut-off modes at the source plane and the required actuator
displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted.
Equivalent cases with and without flow were examined for the cylindrical and annular
geometry, and little difference was found for a duct flow Mach number of 0.1.

The actuator ring coupling program will be adapted as a subroutine to the
cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the
fan source to be defined in terms of characteristic modes at the fan source plane and
predict the propagation to the arbitrarily-located ANC source plane. The actuator
velocities can then be determined to generate the anti-phase mode. The resulting
combined fan source/ANC pressure can then be calculated at any desired wall sensor
position. The actuator velocities can be determined manually or using a simulation of a
control system feedback loop. This will provide a very useful ANC system design and
evaluation tool.
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1. Introduction
1.1 Program Objective

The objective of this effort is to develop an analytical model for the coupling of
active noise control (ANC) piston-type actuators that are mounted flush to the inner and
outer walls of an annular duct to the modes in the duct generated by the actuator motion.
The analysis will be used to couple the ANC actuators to the modal analysis propagation
computer program for the annular duct, to predict the effects of active suppression of fan-
generated engine noise sources. This combined program will then be available to assist in
the design or evaluation of ANC systems in fan engine annular exhaust ducts.

1.2 Previous Effort

In a prior analysis', a model was developed for the coupling of ANC sources to a
cylindrical duct, more representative of a turbofan inlet. The reader is referred to that
paper for background on prior research and motivation for the application of ANC
systems to aircraft engines.

The previous analysis did not account for the effects of mean flow, which is
included in this analysis. The present study is based in large part on the development
presented in the previous paper, extending the analysis to include annular duct geometry
with ANC actuators on both inner and outer walls and the effects of uniform mean flow.
The results apply to both cylindrical and annular ducts, with or without mean flow. The
extension to annular ducts provides a first approximation to simulating a fan exhaust
system.

1.3 Duct Geometry

Figure (1). shows the duct geometry and the mounting positions for the actuator
rings. The radial variable is r, the angular variable is 8, and the axial variable is z. The
duct inner and outer radii are given by 1, and r, respectively. The actuator ring has axial
extent L, and the zero of the axial coordinate system is taken as the upstream end of the
actuator ring. The mean flow velocity is denoted as U, and the flow is positive when
moving in the direction of the positive z-axis (exhaust duct flow will be positive, inlet duct
flow will be negative).
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Figure (1).  Annular geometry for ANC actuator mounting.
1.4 Assumptions

The analysis is subject to a number of idealizations and simplifying assumptions.
Among these are:

1. The duct geometry is axisymmetric and is assumed to be constant in inner and outer
radii along the full length of the duct.

2. The mean flow is assumed to have a uniform profile, that is, contains no shear layers.

The actuators are rectangular in shape, and behave like rigid pistons, achieving a

volume velocity equivalent to a piston mounted flush to the wall.

4. It is assumed that there is no interaction between the propagating fan-source-
generated mode passing the actuator rings and the pistons, that is, the pistons are
assumed to have infinite internal impedance.

had

The program is meant primarily for computing the case in which only one radial
mode is cut-on.  The actuator velocity that generates the first radial mode that matches
the fan source mode is found. The complex ratio of inner actuator velocity to outer
actuator velocity is given, and this ratio is maintained throughout the computation as the
outer wall actuator velocity is scaled. The program solution determines the pressure
(modal) spillover into higher-order cut-off modes at the actuator source plane. Although
these modes do not propagate, the smaller their value the more efficient is the coupling of
the actuators to the desired mode.

The program can also be used for the case with multiple cut-on radial modes, but
the computation attempts to match only the first radial mode to the input SPL level. The
given inner actuator velocity to outer actuator velocity ratio is maintained throughout the
computation. The mode coefficient obtained for the second radial mode will depend on
the velocity chosen for the inner actuator, but the program does not attempt to find the



inner actuator velocity that best matches both fan source mode coefficients
simultaneously. This, in fact, may be a very difficult problem to solve.

1.S Approach

The approach will be to use a classical modal solution to the wave equation in an
annular duct with non-homogeneous boundary conditions. A transformation of variables
method is applied that transforms the homogeneous differential equation with non-
homogeneous boundary conditions to a non-homogeneous differential equation with
homogeneous boundary conditions, which is more tractable. A modal expansion in
hardwall duct modes is used to solve the radial variation and the axial vanation is solved
using infinite Fourier Transforms. This is similar to the approach in Reference 1, with the
extension to more complex annular geometry and the inclusion of the effects of mean
flow.

1.6 Summary of Results

An analysis has been developed that predicts the modes generated in an annular
duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of
the duct. The analysis has been combined with a previous analysis for the coupling of
modes to a cylindrical duct in a FORTRAN computer program which is operational and
partially validated. The method includes the effects of uniform mean flow in the duct.
The program can be used for design or evaluation purposes for active noise control
hardware for turbofan engines.

Predictions for some sample cases modeled using the geometry of the NASA
Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the
m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial
mode content in higher order cut-off modes at the source plane and the required actuator
displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted.
Equivalent cases with and without flow were examined for the cylindrical and annular
geometry, and little difference was found for a duct flow Mach number of 0.1. The use of
the inner ring of actuators to improve coupling efficiency to a single radial mode and to
couple to two radial modes simultaneously was examined.



2. Analysis of ANC Actuator Coupling to an Annular Duct
2.1 Wave Equation for the Acoustic Pressure

The partial differential equation for the acoustic pressure in a duct with uniform
mean flow is given by

2
0 0 202
—+U—|p=c’V 1
(5t+ az)pc P M

where

time

axial variable

acoustic pressure

speed of sound

mean flow velocity in the z- direction

cCoT N~
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Using the Laplacian operator in a cylindrical coordinate system and postulating harmonic
time dependence of the form

p(t) =€ @)

where

i = A1
0 circular frequency, = 2nf
f = frequency, Hz,,

we can write Equation (1) in the form
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where
r = radial variable
S] = circumferential variable.

The periodic boundary condition in € allows us to separate the 6-dependence of
the solution in the form



p(r,2,6) = p(r, 2)e™ @)
where
m = spinning mode order, any positive or negative integer or zero

When Equation (4) is substituted into the partial differential equation, this further reduces
the form to
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where
k = wavenumber, = o/c (constant)
M = mean flow Mach number, = U/c (constant)

This is the homogeneous partial differential equation in the radial and axial
variables. The solution for p in r and z must satisfy this equation and the boundary
conditions applied by the actuators at their locations on the inner and outer walls of the
duct.

2.2 Boundary Condition with Slip Flow

The actuators will be modeled as rigid pistons of rectangular shape that vibrate
with infinite internal impedance at frequency @. On the actuator surface, the wall has a
radial velocity component denoted by vy. The boundary condition, which must include the
effects of slip flow at the wall surface, will be written in terms of the requirement that the
normal component of acoustic particle displacement be continuous at the wall (it should
be noted that the physically incorrect assumption of slip flow leads to the anomaly of
different boundary conditions depending on whether particle displacement or particle
velocity continuity is assumed?).

The normal velocity of the actuator surface at the wall is related to the surface
displacement for harmonic time dependence as

vy = -i0g ©)
where ¢ denotes either the actuator surface displacement or the acoustic particle

displacement at the wall. The acoustic particle velocity at the wall is written in terms of
the acoustic particle displacement using the convected derivative,
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where v, is the radial component of the acoustic velocity.

The radial component of the acoustic momentum equation is given by

=ipov, —pU Al (8)
0z
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where p is the ambient air density. The assumption of continuity of particle displacement
at the wall requires that the actuator displacement be the same as the normal component
of acoustic particle displacement. Combining Equations (6) and (7) gives the relation
between actuator normal velocity and the acoustic particle velocity normal to the wall.

v, =(l+i-l\i—g)vw €))
k oz

Substituting the expression for the acoustic velocity at the wall into the momentum
equation gives the boundary condition for the pressure at the wall

- 2
%:i%ﬁ[an%] vy (10)

The actuator velocity at the wall can be Fourier-analyzed into its various spinning
mode components in the circumferential direction, which will depend on the functional
form of the actuator velocity in 6

v, (8)= ivwmeime (11)

m=-w

where Vur 1s the m-order component of the actuator circumferential velocity profile at the
wall. This expansion and a method to determine the vy to generate a preferred m-order
were the considered in Kraft and Kontos®. For this analysis, we assume that only a single
m-order is under consideration, and that the m-order component of the actuator wall
velocity variation has been determined and 1s given.

The actuator velocity at the inner and outer walls can be expressed in terms of the
m-order spinning mode component and the axial velocity profile as

Viw = Vlmh(z) (12)



and
Vow = Vamh(2) (13)

where subscript 1 refers to the inner wall, subscript 2 refers to the outer wall, and h(z) is
the dimensionless axial functional dependence of the actuator velocity.

The boundary condition equation at the inner wall can then be written

op

. 2
= 1+M—a— A h(2) atr=r, 0<z<L (14)
orf, k Oz

and the boundary condition at the outer wall can be written

%

. 2
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where we define the m™ order coefficient of the wall velocity at the inner wall as

Alm = -ikaVlm (16)
and the m™ order coefficient of the wall velocity at the outer wall as

Ao = -1pckvyny (17)
We have made an implicit assumption here that leading and trailing edges of the inner and
outer rings align at the same axial stations. Later it will be shown that this is necessary to
simplify the analysis. Rings that do not align axially can be considered separately and the

generated pressure fields will add linearly.

We shall also refer to the effective volume velocity of the actuator rings, which is
defined at the inner wall as
L
Vim = e““ejvlmh(z)dz (18)
0

and at the outer wall as

L
Vom = €™ [V, h(2)dz (19)
0



For the purposes of this analysis, we assume that the duct walls adjoining the
actuator rings at both the inner and outer walls are hard, so that the boundary condition
away from the actuator region is given by

»_,

3 at r=r and r=r for z<0 and z>L (20)
r

2.3 Transformation to a Non-Homogeneous Differential Equation with
Homogeneous Boundary Conditions

The objective is to transform the homogeneous differential equation with non-
homogeneous boundary conditions into a non-homogeneous differential equation with

homogeneous boundary conditions. This is accomplished using a three-dimensional
transformation of variables for the acoustic pressure of the form

f(r,6,2) = p(r,6,z) - g(r,6, z) (21)

where g(1,0,z) is chosen to be an otherwise arbitrary function that satisfies the non-
homogeneous boundary conditions.

The choice we shall make for g(r,8,z) is a quadratic form in r:
8(r,6,2) = |Byr + Byr” ]eim"h(z) (22)

where B, and B, are undetermined constants. Then, atr =1y,

%5 = [B; +2B,5 )™ h(2) (23)
r
andatr =rn,,
%"2 =B, +2B,5,}e™h(2) (24)
r

We want to show that f{r,0,z) satisfies homogeneous boundary conditions at r; and
r;. The radial derivative of f at r = r; can be written as

2
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where Equation (15) for the boundary condition in p and Equation (24) for the boundary
condition in g have been substituted and the common €™ factor has been divided out.
Similarly, the radial derivative of f at r = r, can be written as

z

2
of op O .M 0
5= a—rrj - 6_% = (1 +i _6_] Aymh(z)~[B; +2B,1, h(2) (26)

To get homogeneous boundary conditions in f, we set

—a—f——-O at r=r and r=r, 27)
or

Carrying out the derivatives of h(z) from the square of the convected derivative in
Equations (25) and (26), we can define a function

’ 2 "
My (MY -

Hy (z)=1+2i 22
m(2) "X b

where the primes denote differentiation with respect to z. Equations (25) and (26), then,
are two equations in two unknowns for B; and B,, which can be solved to give

HM(AZm B Alm) £

B, =HpqAom - 2 (29)
Ih—1
and
Hy (A, ~A
B2 = M( 2m lm) (30)
2(‘2 - rl)

Note that B; and B; are functions of z. With the coefficients B; and B,, the function g 1s
completely determined, and the function f satisfies homogeneous (zero derivative)
boundary conditions.

It remains to derive the differential equation that f must satisfy. This is found by
substituting Equation (21) for p into the differential equation. After a fair amount of
algebra, the result can be shown to be
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This is the non-homogeneous partial differential equation that must be satisfied by the
function f, which, by virtue of the particular choice of g, has homogeneous boundary
conditions.

For convenience, we shall write the differential operator on the left-hand-side of
Equation (31) as

ror\ ér 2 62>

2 2
£()=li(ri)—m—+21kMai+(l+M2)a—+k2 (32)
r z

The right-hand-side of the differential equation can also be written in a somewhat easier to
grasp form as

At 2) = D1%+D2 +Dyr +D,r? (33)
where
D,(2) = (m2 -1)B;h (34)
D(2)=(4+ m?)B;h (35)
D(2) = —[kzh +2ikMh’ +(1- Mz)h”]Bl (36)
and
D,(z) = —[kzh +2ikMb’ +(1- Mz)h”]Bz 37)
Using Equations (32) and (33), the differential equation can now be written simply
as

{f)=Q(r,2) (38)

10



Note that the “source” term on the right-hand-side of the differential equation
depends on frequency, Mach number, radius, and the z-dependence of the actuator
velocity profile.

2.4 Derivation of the Non-Homogeneous Differential Equation in z

The solution to the non-homogeneous differential equation is obtained as an
expansion in a series of eigenfunctions of the radial modes in an annular duct such that the
expansion coefficients are functions of z that depend on mode order (m,n)

£(r,2) = 2 frun (2@ mn (maT) (39)
n=1

where n is the radial mode index ordered such that the lowest order radial mode (the first)
has n = 1, and the annular duct eigenfunctions are given by

(pmn (amnr) = Jm(amnr) + CmnYm (amnr) (40)

where I, is the m™ order Bessel function of the first kind, and Y is the m™ order Bessel
function of the second kind. The eigenvalues o, are the roots of the boundary condition
equation for a hardwall annular duct,

00 pyn (G )

=0 at r= and r=p (41)
or

These roots can be found by various means, and are assumed to be known. Root-finding
subroutines are provided as part of the program that implements this analysis for both
cylindrical and annular ducts.
If we define
Ymn = %mnT2 (42)

then the mode coefficient Cn, can be written as

_ —me(Ymn)+'Yanm+1(Ymn) (43)

C =
o mYm('Y mn) _YmnYm+1(Ymn)

Note that if r; = 0, them Cp,, = 0.

11



The first step in finding the unknown coefficients fy, is to multiply through the
differential equation (38) by @m.r and integrate from r, to 1,.

J @ my2(F)rdr = J Q(r, z)(pmj(amjr)rdr (44)

Substituting Equation (39) for fin the differential operator, we have

28) = 3 &£ (2P mn (A o T)] (45)

n=1

Applying the differential operator to the individual terms in the sum, we get

100 m’o o of
£[fmn(pmn] i fm“[;gr'[r (gr:n)_ 1'2mn +k2(pmn:|+21kM am;n Pmn +

2
(46)

The first two terms of the term in square brackets on the right-hand-side of Equation (46)
can be recognized as the Bessel eigenfunction equation for the radial mode in a cylindrical
or annular duct, so that we can (without proof) state the following relationship:

r or or 2 mn T ma

- 2
1 O(ra(pmn]_m Pmn = g2 (47)
r

Making these substitutions, Equation (44) becomes

n
(1- M)z, + 2ikMfgy + (k2 — o Yoy = NL [ Q(r. 2)0 mj{cmyt)rr (48)
my 5
where
I
ij = Immjmmjrdr (49)

n

12



is the mode normalization integral, where we have made use of the orthogonality
properties of the eigenfunctions,

)
J@m@mjrdr =0 for n=#j, (50)
h

and where Q(r,z) is given by Equations (33) through (37).

The integration over r on the right-hand-side of Equation (48) breaks into four
separate integrals, and can be written as

I
[ Q(t, 2)0 s (0t T)rdr = Dy ()HE™ + Do HI™ + D3HE™ + DHE® (51)
n
where
by
HE™ = [ 0 (tar)dr (52)
I
2y
H™ = Jmm(amr)rdr (53)
n
I
HY" = J@mn(amnr)rzdr (54)
h
and
I
Hi" = me(amr)r3dr (55)

n

These integrals must be calculated numerically, but will be constants depending only on
mode order when computed. The integration subroutines are described briefly in
Appendix A.

We now transform the differential equation in z to a form that explicitly shows the
dependence on the actuator velocity function h(z) on the right-hand-side. The result is

13
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2
h h h’
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h
where
QR =(m? - 1)BAHE" +(4+m?)BAH™ - kK’BAHS" - k’BA,HI" (57)
) _ (.2 .M mn 2\, M o . mn
QR =(m? - 1)21—k—BA1H0 +(4+m )21?BA2H1 — 4MKBA,HI™ -
4iMKBA,HI™

(58)

Q) =—(m? - 1)(%)2 BAHIM™ - (4+ mz)(%)zBAZH{m - (1-2M%)BAHS™ -

(1-2M2)BA, HE"

(59)

(60)

Qi = 4M?[BA HF" - BA,HJ" | (61)

Q® - -2M =2 (1-2M2)[BAHE" ~ BAHY" | (62)

1-M?
Q) = —(k—)[BAle -BA H;‘“‘] (63)
and where
~A
BA,; = A, - Aom = Aim I (64)

Lh—n

14



A2m - Alm

BA, =
2 2(r2 - rl)

(65)

The QU) coefficients are constants, so that all the z-variation on the right-hand-side of

Equation (56) is contained in the h-function and its derivatives. This completes the
derivation of the ordinary differential non-homogeneous differential equation in z, which
will now be solved.

2.5 Fourier Transform for z-Dependence

We solve Equation (56) using the method of infinite Fourier Transforms. Since we
have not specified a particular form for the actuator velocity profile function h(z), we will
only be able to express its Fourier transform symbolically at this point. The last three
terms on the right-hand-side of Equation (56), which contain products and ratios of the b-
function and its derivatives, are particularly troublesome.

The Fourier Transform of the f-function will be written as

F(x)= J[f(2)] = Tf(z)e“‘“dz (66)

The relationships for the Fourier Transform of derivatives of the f-function are

J[f'(2)] = -ikF(x) (67)
and

I[f"(2)] = ~x*F(x) (68)

and the inverse transform is defined as

f(z) = % [ e F(x)dx (69)

-oC

Note that this form of the Fourier Transform pair is the complex conjugate of that found
in many reference works. The choice of sign on the exponent in the integrand is arbitrary.

We will denote the Fourier Transform of the h-function as

Hi) = 3[h(z)]

15



Taking the Fourier Transform of Equation (56), using the relationships for Fourier

Transforms of derivatives, and solving for the Fourier Transform of f,,, we get

[Q(l) _ixQ® -
Fop (¥) =

(3) ]%(K) + Q(4)H4 + Q(S)HS + Q(G)

[(k2 —afm)+2kMK ~(1- M) ]

(70)

where Hs, Hs, and Hg are the Fourter Transforms of the functions involving ratios of h(z),

defined as

and

hr2
Ha =7 T)
H; = E_)
h

h"?

There are six inversion integrals to be evaluated:

oC

QWM H(x)e

G- |

[+ o]

T (k2 —afnn)+2kMK—(l—M2)K2

~ikQ2 H(k)e ™

%@=§J@2

o©

~ oty )+ 2kMx — (1~ M)k

k2QB3) H(x)e ™

Gy(@)=5- [

«©

T _m(k2 —oc,zm)+2kMK —(1—-M2)K2

Qi H (k)™

Ga@=o- |

-

-

ocfm) +2kMxk —(l - MZ)K2
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dk

dk

dx

dx

(71)

(72)

(73)

(74)

(75)

(76)

(7
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! QGAH;(x)e ™
Ge(z)= — mn d 78
5(2) 27t_J;°(k2—aI2,m)+2kMK—(l—M2)K2 ) 78
and
« (6) —-ixz
Ge(2) = i | Qunn He (K )e dx (79)

(k2 —a,znn) +2kMxk —(l - M2)1<2

-0

The first three integrals will be evaluated using the residue theorem, and the last three
integrals will be shown to take simple forms for the particular form of h(z) chosen.

To apply the residue theorem, we need to find the roots in the denominator of the

integrand, which is the same in all the integrals. We assume that the Fourier transform of
h(z) possesses no singularities so that all the roots are obtained from the denominator,

= (1- M )ic? + 2kMi + (k% — 0, ) = 0 (80)

There are two values of k that satisfy this relationship:

= (81)

These can be identified as the axial propagation constants for forward and backward
traveling waves in a duct with uniform flow. In terms of the two roots, we can write the
denominator of the integrand as

(1 - Mz)lc2 - 2kMx - (k2 - a,zm) = —(1 - MZ)(K - K(l))(l( —K(z)) (82)

Substituting this into Equation (74) for G(z) gives

QT e dz
o= 27t(1—M2)_'[D(K—K(l))(x—x(z)) )

The inverse Fourier Transform can be evaluated in this case using the residue
theorem, and the method is considered in detail in Appendix B. The solution for the
forward-traveling (m,n) mode can be shown to be
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Gy(2) = ~ 2m (84)

where

Kmn = (85)

is the axial propagation constant for the forward-propagating (m,n) mode.

Similarly, the solutions for G, and G; can be obtained as

+ ixi z
%(——Km)e mn

G(2) =~k 5,Q%) 86

2(2)= 7 \/kz—(l—Mz)afnn 0
and

G3(2) =i{x5n) QF) Ao (87)

- \/kz - (1-M?)o,

We can evaluate the Gs, Gs, and G functions if we make some restrictions on the
form of the ratios of h-functions and derivatives in Hs, Hs, and He. If we require that Ha,
Hs, and H have no poles to contribute to the residues within the contour of integration,
the solution for the Gs4, Gs, and G¢ functions can be written in terms of Hy, Hs, and Hg as

iQ(4) H4(-—K M )eix;‘"z

Ga(2) = - 2mn (88)
4(2) 2 sz_(l_Mz)afnn
PR e 89)

2 \/k2 —(1 - Mz)afnn

and
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iQ(s) Hs(—K oa )eiK:““z

mn
2 \/I{z —(l—Mz)afm

To derive these inverse Fourier transformations, we have had to apply restrictions
on the form of the actuator velocity z-dependence. We require that the Fourier transform
of h(z) have no poles in the lower half plane (see Appendix B), and that the Fourier
transforms of the derivative ratio functions also have no poles in the lower half plane.
Without these restrictions, it is necessary to return to the original Fourier Transform
integrals, which may be very difficult to evaluate.

(90)

Ge(2) =~

2.6 Solution for the Acoustic Pressure Field Generated by the Actuators

The (m,n) mode contribution for the f-function that was used to transform the
differential equation and boundary conditions has been determined and can be written

fn (2) = F [Fan (k)] = Gy + Gy + G3 + G4 + G5 + Gy (91)
writing out the G-terms, this becomes

%( -« )eix;‘mz

mn

sz (1 - Mz)afm

Q)
fa (2) = [“ﬁ —me&+(,meﬁ}

(92)

encmnz

sz ~M%)

—{QmH4 (i) + QUM (50 ) + QEAHs( )

Then, combining Equations (21), (22), and (39), we can express the pressure field
in the m™ order spinning mode generated by the wall-mounted inner and outer actuator
ring source as

o0

p(r,6,2) = {Z[m(z)wm Innr)]+[131(z)r+2132(z)r2]h(z)}.c.-im" (93)

The only unknown left to make this a computable formula is the Fourier Transform of the
actuator velocity profile in z. This, of course, depends upon the choice of function used to
represent the piston vibration, and will be solved for the particular case of a box function
in the next section.

19



3. Solution for Box Function Actuator
3.1 Choice of Box Function Actuator Velocity Profile

Several choices present themselves for the shape of the axial velocity profile for
the actuator motion, h(z). The preferred choice will have a known and acceptable Fourier
transform and will furthermore have a simple Fourier Transform for the three ratio
functions involving h(z) and its first and second derivatives. It is assumed that the
circumferential velocity profile has already been accounted for in the spinning mode
decomposition.

Three more obvious possibilities are:

1. Delta function source - zero axial length but finite volume velocity

2. Box function source - rigid piston motion with a displacement and velocity
discontinuity at the edges

3. Half-sine-wave source - good representation of the lowest simply-supported plate
vibration mode, displacement and velocity go to zero at the edges.

The Fourier Transform of the delta function is well known, but some difficulty may
be encountered in finding the transforms of combinations like

3@ §3@R@) 4 o3
8(z) 8(2) 5(z)
Also, a function of finite extent may be a better physical representation of the actuator for

the shorter modal axial wavelengths. For these reasons, the delta function was not
considered at this time.

The box function, as illustrated in Figure (2) has a constant velocity amplitude
between 0 <z <L, and represents the motion of a rigid piston actuator. The Fourier

Transform of this function is given by

1 e
g(—K)—E——iK— (94)

Since the first and second derivatives of h(z) are zero (neglecting edge effects), we have
H4=H5=H6=0 (95)

This is the velocity function used for further illustration by a sample calculation.
The box function could be an approximate representation of a source of any other shape
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by choosing the velocity of the piston based on an effective volume velocity for the more
complex actuator.

1 Actuator Piston

Actuator

Motion Wall

Wall

Figure (2) Diagram of box function axial velocity profile for actuator.

The very realistic half-sine-wave velocity profile has an easily calculated Fourier
transform, but the transform of the ratio functions may take some additional effort.
Examination of this case is left for the future, and is recommended as a follow-on task.

3.2 Sample Computations for Box Function Case

The computer program FDANC has been written to compute the acoustic pressure
coupling of wall-mounted rings of ANC actuators in cylindrical or annular ducts. The
program was used to compute the modes generated in the inlet and exhaust ducts of an
analytical model that simulates the NASA ANC Fan that is mounted in the NASA Lewis
AAPL Test Facility. The parameters that are held constant throughout the computations
are the following:

Inlet and Exhaust outer radius = 2.0 feet
Exhaust inner radius = 0.6145 feet

Flow temperature = 70 degF

Spinning mode order, m =6

Number of radial modes = 6

Outer wall SPL=110dB

Axial length of ANC actuator = 4.5 inches

For this study, both cylindrical and annular ducts were considered, using the above
parameters. Two values of mean flow Mach number were used, Mach 0.0 and 0.1. The
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annular duct case was run with actuators on the outer wall only, inner wall only, and both
walls. For the cases with actuators on both the inner an outer walls, the inner wall
actuator velocity was set to a value based on the ratio of the first radial mode shape at the
inner wall to that at the outer wall. Two cases with a higher radius ratio (Ri/R; = 0.75)
were compared. Finally, a case at a higher frequency with two cut-on radial modes 1is
presented. A brief outline of the differences among the cases is presented in Table (1):

Table (1) Differences among sample cases used for computations. All cases have
same outer radius (R; = 2.0) and same spinning mode order (m = 6).
Inner Inner Outer

Case Radius Mach Frequency Actuator Actuator

Number R,, ft. Number Hz. Active? Active?
1 0.0 0.0 935 n/a Yes
2 0.6146 0.0 935 No Yes
3 0.0 0.1 935 n/a Yes
4 0.6146 0.1 935 No Yes
5 0.6146 0.1 935 Yes No
6 0.6146 0.1 935 Yes Yes
7 1.5 0.1 935 No Yes
8 1.5 0.1 935 . Yes Yes
9 1.5 0.1 1350 Yes Yes

3.2.1 Computer Qutput for Case 1, Cylindrical Duct, Mach 0.0, m = 6

This is a basic run for the inlet duct to illustrate the program output. This case has
no mean flow, and the frequency is such that only one radial mode is cut-on for the m =6
spinning mode. The results will be compared below to a flow case.

PROGRAM FDANC1 - TURBCOFAN ANC SPECS

CYLINDRICAL OR ANNULAR HARDWALL DUCT ROOTS FOUND AS
ROOTS OF DERIVATIVE OF BESSEL FUNCTION

INNER RAD = .00C OUTER RAD = 2.000 DUCT HGT = 2.000 ft
DUCT MACH # = .00000
FLOW TEMPERATURE = 70.00000 deg F
SPEED OF SOUND = 1128.295 ft/sec 343.904 m/sec
FREQUENCY = 935.0 Hz., ETA = 1.65737
WAVE NUMBER, k = 17.08260 per m., kH = 10.4135%
SPL = 110.000 dB
AXIAL LENGTH OF ANC PORT = 4.500000 in.
AIR DENSITY = 1.2300E+00 kg/m™3
RHO*CS = 423.0023 MKS Rayls
SPINNING MODE ORDER, m = 3
NUMBER OF RADIAL MODES = 6
THIS DUCT TAKEN AS CYLINDRICAL WITH INNER RADIUS SET TO C
JR HW ROOT PROP CNST (RE,IM) CUT-OFF FRQ HW COR AXL WVLNTH MOD ANG
ALPHA*R2 PER METER HZ ft deg
1 7.501266 11.848900 .000000 673.515 1.39 .5303 46.08
2 11.734940 . 000000 8.874456 1053.€643 .B9 .0000 90.00
3 15.268180 -.000001 18.3.6620 1370.882 .68 . 0000 90.00
4 18.637440 -.000001 25.355620 1673.297 .56 . 0000 9C.00
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5 21.931720 -.0CC001 31.663000 1969.180 .47 .0000 90.00

[ 25.183830 -.000002 37.614940 2261.18¢ .41 . 0000 90.00
PRESSURE AT SPL = 6.3246E+00 nt/m"2
ENERGY IN J=1 MODE = 2.7583E-02 watts
DESIRED MCDE AMPLITUDE = 1.7859E+01 nt/m"2
INITIAL PISTON VELOCITY, INNER WALL = .00000C . 000000 m/sec
INITIAL PISTON VELOCITY, OQUTER WALL = 1.00000¢C . 000000 m/sec
INNER VELOC/OUTER VELOC = . 000000 .00000C
JR EV-ALPHA MCDE C-VAL MODE COEFT (RE, IM) MAG MODE ARMPL
PER METER nt/m™2 nt/m"2
1 12.305230 .000000 . 000000 1.785888E+01L ~-1.561300E-07 1.7858E+01
2 19.250220 .000000 . 000000 1.535435%E-01 1.909%16E~01 2.4506E-01
3 25.046230 .000000 . 000000 1.788268E-01 2.224413E~01 2.8541E-01
4 30.573230 . 000000 . 000000 7.065713E-02 8.788983E~-02 1.1277E-01
5 35.97722¢0 .000000 .0G0000 8.507293E-02 1.058215E-01 1.3578E-01
[ 41.312210 .000000 . 000000 1.325678E-02 1.649000E-02 2.11858E-02

VELOCITY AT INNER WALL = 0.000C0E+Q0 0.00C00E+C0 m/s
VELOCITY AT CUTER WALL = -5.77585E-02 4.64337E-C2 m/s
DISPLACEMENT AMPLITUDE, INNER WALL 0.0000CE+00 in
DISPLACEMENT AMPLITUDE, OUTER WALL 4.96668E-04 in.

L]

It should be noted that the values in the column marked “HW ROOT” are the
roots of the Bessel function boundary condition, ynj, which are nondimensional, but that
the value in the column marked “EV-ALPHA” are the 0., in dimensions of 1/meters. The
propagation constants are also in units of 1/meters. The MODE C-VAL is the coefficient
that multiplies the Bessel function of the second kind in the annular duct eigenfunction,
and thus is zero for the cylindrical duct eigenfunction. The columns marked MODE
COEFF (RE, IM) are the complex mode coefficients for the pressure solution, and are the
desired results of the computation.

Note that the desired mode amplitude to achieve 110 dB SPL in the first radial
mode (the only cut-on mode) requires a pressure amplitude of 6.32 nt/m” at the outer wall
and a mode coefficient amplitude of 17.86 nt/m*. The displacement amplitude that is
required for the actuators to generate this mode coefficient is 5.0x10™ in.

The magnitudes of the mode coefficients for this case are plotted in Figure (3), and
the pressure profile is shown in Figure (4). Note that the second highest mode, the third,
is 36 dB down from the first mode, indicating excellent coupling to the cut-on mode for
this case. The pressure profile is essentially the pure m = 6, j = 1 Bessel function of the
first kind.
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Figure (3) Mode coefficients for Case 1
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Figure (4) Pressure profile for Case 1
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3.2.2 Computer Output for Case 2, Annular Duct, Mach 0.0, m = 6, Outer Wall
Actuator Only

This case is for the annular duct with no flow, with a radius ratio of 0.307. The
actuator velocity at the inner wall in this case is set equal to zero. The output for the
annular duct case is slightly different, and is shown below:

PROGRAM FDANC1 - TURBCFAN ANC SPECS

CYLINDRICAL OR ANNULAR HARDWALL DUCT ROOTS FOUND AS
ROOTS OF DERIVATIVE OF BESSEL FUNCTION

INNER RAD = .615 OUTER RAD = 2.000 DUCT HGT = 1.385 ft

DUCT MACH # = .00000

FLOW TEMPERATURE = 70.00000 deg F

SPEED OF SOUND = 1128.295 ft/sec 343.904 m/sec
FREQUENCY = 935.0 Hz., ETA = 1.14806

WAVE NUMBER, k = 17.08260 per m., kH = 7.21347
SPL = 110.000 dB

AXIRL LENGTH OF ANC PORT = 4.500000 in.

AIR DENSITY = 1.2300E+00 kg/m"3

RHO*CS = 423.0023 MKS Rayls

6
6

SPINNING MODE CRDER, m
NUMBER OF RADIAL MODES

il

ANNULAR DUCT ANARLYSIS USED

J GREC GCYL GANN
1 .0000 7.5013 7.8010
2 4.5353 11.7349 11.7178
3 9.0706 15.2682 15.1073
4 13.6059 18.6374 18.1882
5 18.1411 21.8317 21.5424
6 22.6764 25.1839 25.3502
JR HW ROCT PROP CNST (RE,IM) CUT-OFF FRQ HW COR AXL WVLNTH MOD ANG
ALPHA*R2 PER METER HZ ft deg
1 7.501023 11.849320 . 000000 673.493 1.38 .5303 46.08
2 11.71781¢0 . 000000 8.813345 1052.1058 .89 .0000 90.00
3 15.1072%¢C -.000001 17.954040 1356.436 .69 . 0000 90.00
4 18.188200 -.000001 24.461990 1633.061 .57 . 0000 90.00
5 21.542440 -.000001 30.935500 1934.228 .48 . 0000 30.00
3 25.350170 -.000002 37.914260 2276.112 .41 . 0000 90.C0
PRESSURE AT SFL = 6.3246E+00 nt/m"2
ENERGY IN J=1 MODE = 2.7591E-02 watts
DESIRED MODE AMPLITUDE = 1.7859E~+01 nt/m"2
INITIAL PISTON VELOCITY, INNER WALL = . 000000 .000000 m/sec
INITIAL PISTON VELOCITY, OUTER WALL = 1.000000 .0000C0 m/sec
INNER VELOC/OUTER VELOC = .000000 . 000000
JR EV-ALPHA MODE C-VAL MODE COEFF (RE, IM) MAG MODE AMPL
PER METER nt/n"2 nt/m~2
1 12.304830 -.000129 .000000 1.785888E+01 -1.703681E-07 1.785%E+01
2 19.222130 -.014:592 .00G000 6.858777E-01 8.531162E~-01 1.0946E+00
3 24.782310 -.148402 .000000 6.013200E-02 7.479410E-02 9.5969E-02
4 29.836290 -.451348 .00C000 -7.545694E-02 ~9.385574E-02 1.2043E~01
5 35.338650 -.392167 .000000 2.288906E-02 2.847013E-02 3.6530E-02
3 41.5€4930 .162785 . 000000 -4.326065E~02 ~5.380896E-02 6.9043E-02

VELOCITY AT INNER WALL 0.000COE+0C 0.00000E+00 m/s
VELOCITY AT OUTER WALL = -7.177%0E~-02 5.77080E-02 m/s
DISPLACEMENT AMPLITUDE, INNER WALL 0.00000E+00 in
DISPLACEMENT AMPLITUDE, OUTER WALL 6.17243E-04 in.
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Figure (5) shows the mode coefficient magnitude for this case, and Figure (6)
shows the pressure profile. Note that the second radial mode is 24 dB down from the first
mode in this case, indicating very good coupling efficiency. An actuator displacement
amplitude of 6.2x10™ inches is required to achieve the required SPL level. Generally, the
case is very similar to the cylindrical duct case, as one might expect at this low radius
ratio.
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Figure (5) Mode coefficients for Case 2
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Figure (6) Pressure profile for Case 2
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3.2.3 Comparison of Cases 1 and 3

Cases 1 and 3 are for the cylindrical duct, Case 1 with no flow and Case 3 with a
flow Mach number of 0.1. The mean flow of Mach 0.1 has had very little effect on the
mode coupling due to the actuator in this case, as can be seen from Figure (7), which
compares the mode magnitudes for the cases with and without flow. The pressure profiles
are nearly indistinguishable from those presented previously.

Case 01 vs. Case 03

10.00 +——

OCase 01
o Case 03

i
2
1 2 3 4 s [

Radial Mode Number

Figure (7) Mode coefficients for Case 3 compared to coefficients for Case 1.

3.2.4 Comparison of Cases 2 and 4

Cases 2 and 4 compare the annular duct with and without flow. Case 4 is the
baseline case for the annular duct with the actuator active on the outer wall only, with
Mach 0.1 flow. As in the cylindrical duct case, the mean flow of Mach 0.1 has had little
effect. Figure (8) compares the modes generated by the actuator for Case 2 (no-flow) and
Case 4 (Mach 0.1). The pressure profiles are nearly indistinguishable from those
presented previously.
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Figure (8) Comparison of mode coefficients for Cases 2 and 4.

3.2.5 Comparison of Cases 4 and 5

In Case 5, only the inner wall of actuators is active, otherwise the conditions are
the same as for Case 4. Figure (9) compares the generated mode magnitudes for Cases 4
and 5, and indicates that the actuators at the inner wall only tend to generate higher output
in the higher order modes, an indication of reduced coupling efficiency. The second mode
is 14.7 dB down in Case 5, compared to 24.7 dB down in Case 4. Figure (10) shows the
slightly different pressure profile obtained from the inner wall actuator case.
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Figure (9) Comparison of mode coefficients for Cases 4 and 5.
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Figure (10)  Pressure profile for Case 5
3.2.6 Comparison of Cases 4 and 6

In Case 6, both inner and outer actuators are active. It is necessary to choose the
relative magnitude and phase of the velocity for the inner actuators for input to the
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problem. The objective is to choose the magnitude and phase of the inner actuators such
that the combination of actuators gives the least amount of amplitude to the higher order
modes, coupling most efficiently to the cut-on mode. There is no direct method of
deriving this inner actuator velocity a priori (one would have to use the analysis developed
in this study in the backward sense, rather than the forward sense of predicting what
pressure modes couple to a given actuator motion).

As a first estimate, the inner actuator velocity was set to a magnitude and phase
determined by the ratio of the pressure first mode eigenfunction at the inner radius to the
pressure at the outer surface, assuming the velocities might have roughly the same ratio.
The inner to outer radius pressure ratio was determined to be 0.015432 + 0.0i.

Figure (11) compares the mode coefficients for these two cases, and indicates that
there is not much difference. The radius ratio in this case, however, is quite low, at 0.31,
so that the velocity at the inner actuator is quite small. There may be some other value of
inner wall actuator velocity that offers some improvement in coupling efficiency, but it
would have to be sought by trial and error.

Case 04 vs. Case 06
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Figure (11)  Comparison of mode coefficients for Cases 4 and 6

3.2.7 Comparison of Cases 7 and 8
For Cases 7 and 8 the inner radius was increased to 1.5 feet, giving an annular duct

radius ratio of 0.75. In Case 7, only the outer wall actuator is activated. In Case 8, both
inner and outer wall actuators are activated, and the ratio of inner wall actuator velocity to
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outer wall is determined using the same method described in Case 6. Figure (12) shows
the comparison of mode coefficients for Cases 7 and 8.

Case 07 vs. Case 08
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Figure (12)  Comparison of mode coefficients for Cases 7 and 8

In this case, a marked improvement of coupling efficiency is noted. The second
radial mode is 24.3 dB down in Case 7 with outer wall actuators only, but the second
radial is 37 dB down for Case 8, for this particular choice of inner wall actuator velocity.
Although this may not be the optimum coupling efficiency, it does indicate the potential
for improved coupling to a single mode using both inner and outer actuator rings.

The pressure profiles are almost identical in these cases, since the only difference is
in the higher order mode content, which is small for both cases. It should be noted that
the substantial 24 dB difference obtained with the outer wall actuator ring only may make
the additional expense of an inner actuator ring unnecessary. It would certainly seem to
be unwise for the low radius ratio case. This would have to be evaluated on a case-by-
case basis.

3.2.8 Discussion of Case 9

Although the computer program is aimed primarily at the case in which only one
radial mode is cut on, for which it calculates the “spillover” into cut-off modes, it will
calculate the radial mode coupling independently of the number of cut-on radial modes. It
is not obvious, however, how to choose the inner wall actuator velocity relative to the
outer wall actuator velocity to best couple to two radial modes, which will have relative
magnitudes and phases. It is not clear at this point whether the two coplanar actuator
rings can be used to generate two independent radial modes.
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As an example of a case with two cut on radial modes, Case 9 increases the
frequency of Case 8 to 1350 Hz. The mode coefficients of the fan noise source are
assumed to be the following values at the actuator source plane (assuming these modes
are the anti-phase values):

A;=10+001
A=05-02i

This is the source that the ANC actuator system must try to match. The difficulty is to
determine the inner wall actuator velocity (relative to the outer wall), that will best match
these two modes.

In an actual ANC system with feedback control sensors, the inner and outer wall
actuator velocities in the m = 6 mode would be adjusted (in somewhat of a trial-and-error
process) by the control system to values that attempt to achieve cancellation. A key
question is whether such a set of control parameters exist, because this will bear directly
on the stability of the control system operation.

In this case, a first guess at the inner wall velocity was made by computing the
ratio of the pressure of the sum of the two fan source modes at the inner wall to the
pressure of the sum of the two fan source modes at the outer wall. The following is the
output run for this case:

PROGRAM FDANC1 - TURBOFAN ANC SPECS

CYLINDRICAL OR ANNULAR HARDWALL DUCT ROOTS FOUND AS
ROOTS OF DERIVATIVE OF BESSEL FUNCTION

INNER RAD = 1.500 OUTER RAD = 2.000 DUCT HGT = .500 ft
DUCT MARCH # = .10000
FLOW TEMPERATURE = 70.0000C deg F
SPEED OF SOUND = 1128.295 ft/sec 343.904 m/sec
FREQUENCY = 1350.0 Hz., ETA = .59825
WAVE NUMBER, k = 24.66471 per m., kH = 3.75890
SPL = 110.000 dB
AXIAL LENGTH OF ANC PORT = 4.500000 in.
AIR DENSITY = 1.2300E+00 kg/m"~3
RHO*CS = 423.0023 MKS Rayls

3
&

SPINNING MODE ORDER, m
NUMBER OF RADIAL MODES

#Hon

ANNULAR DUCT ANALYSIS USED

J GREC GCYL GANN
1 . 0000 7.8013 6.8531
2 12.5664 11.7349 14.4285
3 25.1327 15.2682 26.0950
4 37.6991 19.6374 38.3452
5 50.2655 21.9317 50.7813
6 62.8319 25.1839 63.2209

JR HW ROOT PROP CNST (RE,IM) CUT-OFF FRQ HW COR AXL WVLNTH MOD ANG

ALPHA*R2 PER METER HZ ft deg

1 6.853070 19.713180 .000000 612.231 2.21 .3187 26.97
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2 14.428500 4.913265

3 26.095010 -2.491387 35.
4 38.345170 -2.491387 58.
5 50.751250 -2.491388 79.
[ 63.220940 -2.431389 101.

PRESSURE AT SPL =
ENERGY IN J=1 MODE
DESIRED MODE AMPLITUDE

6.3246E+00 n

. 000000

074630
102920
877620
210100

t/m"~2

INITIAL PISTON VELOCITY, INNER WALL =
INITIAL PISTON VELCCITY, OUTER WALL = 1
INNER VELOC/QUTER VELOC = .280375
JR EV-ALPHA MODE C-VAL
PER METER
1 11.241910 -.3058718 . 000000
2 23.668810 -.960686 . 000000
3 42.806770 1.222404 . 000000
q 62.902170 .355008 . 000000
5 83.253360 . 063063 .000000
[ 103.708900 -.1058775 . 000000
VELOCITY AT INNER WALL = 1.10319E-0C2
VELOCITY AT OUTER WALL = 1.77576E~C3
DISPLACEMENT AMPLITUDE, INNER WALL =

DISPLACEMENT AMPLITUDE, OUTER WALL

1288.996 1.05 1.2788 72.71
2331.245 .58 .0000 80.00
3425.634 .39 . 0000 20.00
4533.954 .3C .0000 90.00
5647.956 .24 .0000 80.00

4.9441E-02 watts
1.9178E+01 nt/m"~2

.280375 .163253 m/sec
.000000 . 000000 m/sec
.163253
MODE COEFE (RE, IM) MAG MODE AMPL
nt/m"2 nt/m"2
1.917825E+01 1.32423¢E-08 1.9178E+01
-9.313667E+00 2.115661E+01 2.3116E+401
4.968037E-02 1.548457E-02 5.2041E-02
6.742401E~02 9.323716E-03 6.8066E-02
1.237546E-02 1.816386E~03 1.2523E-02
2.008836E-02 2.430673E-03 2.0235E-02

-1.78015%E-02 m/s
-6.45257E~02 m/s
8.72090E-05 in
2.99620E-04 in.

The output modes, normalized such that the first mode is unity, are given by

A;=10+0.01
A, =-0.486+ 1.1031

The second mode generated by the actuator rings does not closely match the desired fan
source mode. A brief and cursory parametric study was made to attempt to find the inner
wall actuator velocity that would match the desired mode coefficient, but this was
unsuccessful in finding any improvement.

Since this is just a single example case, it offers neither proof nor ability to
generalize, but it may indicate that there will be problems attempting to match two cut-on
modes with coplanar actuator rings. Further investigation of the possible advantages of
inner and outer rings is warranted, and is recommended for future effort.

3
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4. Conclusions and Recommendations
4.1 Conclusions

An analysis has been developed to predict the modes generated in an annular duct
due to the coupling of flush-mounted ring actuators on the inner and outer walls of the
duct. The analysis has been combined with a previous analysis for the coupling of modes
to a cylindrical duct in a FORTRAN computer program FDANC to perform the
computations. The method includes the effects of uniform mean flow in the duct. The
program can be used for design or evaluation purposes for active noise control hardware
for turbofan engines.

Predictions for some sample cases modeled after the geometry of the NASA Lewis
ANC Fan indicate very efficient coupling to the lowest order radial mode in both the inlet
and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial
mode is cut-on. Radial mode content in higher order cut-off modes at the source plane
and the required actuator displacement amplitude to achieve 110 dB SPL levels in the
desired mode were predicted. Equivalent cases with and without flow were examined for
the cylindrical and annular geometry, and little difference was found for a duct flow Mach
number of 0.1.

One case using both inner and outer actuator rings in a high-radius-ratio annular
duct indicated that, when only one radial mode is cut-on, it might be possible to phase
both rings to give a more efficient match to the desired mode than using only the outer
ring. Whether the increased matching efficiency would justify the added hardware
expense, however, is questionable.

One case was considered at a higher frequency in which two radial modes were
cut-on, in a preliminary attempt to generate anti-phase matches to both modes using
coplanar inner and outer actuator rings. In brief search, no combinations of inner and
outer actuator velocity that matched the given modes could be found. Although the
search was far from extensive, this may indicate that two coplanar rings may have a
difficult time matching two arbitrary duct modes.

4.2 Recommendations for Further Effort

Further checkout and de-bugging of the prediction program is required to achieve
a high level of confidence in its validity. This would include some parametric studies in
which frequency, radius ratio, and flow Mach number are varied. It is recommended that
the analysis be checked against test data obtained from ANC testing in the NASA Lewis
4-foot Fan Rig.

The actuator ring coupling program can be adapted as a subroutine to the
cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the
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fan source to be defined in terms of characteristic modes at the fan source plane and
predict the propagation to the arbitrarily-located ANC source plane. The actuator
velocities can then be determined to generate the anti-phase mode. The resulting
combined fan source/ANC pressure can then be calculated at any desired wall sensor
position. The actuator velocities can be determined manually or using a simulation of a
control system feedback loop.

It would be useful to determine effects of higher Mach numbers on mode coupling,
since this preliminary study went only to Mach 0.1 (representative of the flow in the
NASA ANC fan). For the case with one radial mode cut-on, it would be useful to develop
an optimization scheme that determines the inner wall actuator velocity that gives best
coupling to the radial mode, and determine the implications of this increase in efficiency in
terms of required power input, etc.

Finally, the possibility and limitations of coupling to two cut-on radial modes
using coplanar inner and outer actuator rings should be examined. A plot of the mapping
of the complex inner wall actuator velocity to the complex mode coefficient of the second
radial mode could be made for specific cases. The implications of these results to design
of feedback control systems should be explored.
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5. Appendices
5.1 Appendix A - Numerical Computation of Bessel Function Integrals

The solution of the non-homogeneous differential equation that arises from the
problem of the wall velocity boundary condition in the cylindrical duct requires the
computation of four integrals involving Bessel functions of the first and second kind in the
integrands. The integrals requiring evaluation are:

L]
Hy" = I(pmn(amnr)dr (96)
n
I
H™ = [ (0trunt)rdr (o7)
n
I
HI® = J(pmn(amnr)rzdr : (98)
h
and
I
H" = J@mn(amnr)r3dr (99)
n
where

It may be possible to reduce the order of the Bessel function in the integration by
using identities such as

| xnrpmn(x)dx = -x“(pm_l,n(x) + (n+m—1)] xn‘l(pm_l,n(x)dx (101)

and, for certain m-values, this will reduce to a closed form in Bessel functions. Generally,
however, one is left with the integral of a Bessel function that must be computed
numerically, since there is no general integration formula for the integral

| P pn (X)dX
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where m is an arbitrary integer. Since one eventually ends up with an integral to be
evaluated numerically, it seems more straightforward to simply integrate the original forms
of the integrals by numerical integration.

A series of numerical integration subroutines have been adapted to evaluate these
integrals. The subroutines are written in FORTRAN,; suitable for use on the IBM-PC, and
can be easily adapted to almost any other platform. The integrals are solved numerically
by the Romberg integration method based on subroutines provided in Numerical Recipes®.
The subroutine CBESEL, developed at GEAE, is used to compute the Bessel functions.
The subroutines have been checked out against a MathCAD computation.

5.2 Appendix B - Contour Integrations for Inversion of Fourier Integrals
The Fourier Transform Inversion Integral required to find the z-dependent modal

coefficients of the solution to the wall velocity boundary condition equation can be split into six
separate integrals, which, in general form, are

G = -1 iz
Gj(@) = Qz“J‘“ f k" Hc)e dx (102)

(k —afm) +2kMx —(1 - MZ)KZ

forj=1,2 or3, or

| ) Qgrj‘zl © Hj(K)e-iKz
G;(2) 2 ;[ (k- ok ) +2kMx - (1- M2 ) o (163)

for j =4, 5, or 6, where the Qg are constant coefficients that depend on m and n. () is the
Fourier Transform of the axial velocity function for the ANC noise source.

Following Butkov’, these integrals can be evaluated as contour integrals in the complex
plane using the theory of residues. The path of integration must be prescribed, taking into
account poles in the complex plane. Assuming that the velocity function transforms 5‘{(1() or

H(x) have no zeros or poles in the region surrounded by the contour, the poles of the
integrands of both integrals are at the complex points given by the roots of the denominator in
the integrand:

= (104)

Figure (13) shows the contour, which is chosen in a particular manner that results only
in waves traveling in the positive z-direction. The contour consists of the negative and
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positive real axis and a semi-circle of infinite radius that is closed downward. The integration
direction is counter-clockwise. Since the semi-circular part of the integral at infinite radius
doesn't contribute in the lower half plane {¢** — 0), the integral, by the residue theorem, is 2i
time the sum of the residues enclosed by the contour.
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Figure (13)  Shape of the contour for contour integration.

Thus

.00 -ikz
Gi@) = - 2mQumy, Res[ 1 H)e

A 105
1-M? 21 - My - | _ o 1%

K=K

and, since the residue at k =x is

-ixz X ® +i?)z
Lim [-L%(K)e J= L M)

e 21 ¢ - D 2 (@O _ O (106)

the first integral becomes

iQW %(—K;n)ei":"nz

mn

G = —
1(2) 2 sz_(l_Mz)afnn

(107)

Following the same reasoning and using the same contour for the second integral, it
becomes
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. (i 1 K(j_l).%(l()e'i’(z
Gj(z) = -271:1Q§£1Res’:-— 1 5
2m (x ~ «Dyx - x| _ o

(108)

which, by the residue calculus, reduces to

, @)\.ix¥z
6 o)) ol

" \/kz -(1-M?)o, (e

Making the correct substitutions for ¥ and Qp,, one can use these formulae to evaluate all
required inverse transforms. The formulae apply to the cases with Hs, Hs, and Hs if these
transforms are sufficiently well-behaved, otherwise they must be evaluated as special cases.
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